Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available September 19, 2026
- 
            Free, publicly-accessible full text available September 28, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available November 28, 2025
- 
            Free, publicly-accessible full text available December 15, 2025
- 
            Abstract This study presents detailed time-integrated and time-resolved spectral analysis of the Fermi Gamma-ray Burst Monitor observations of the bright GRB 231129C. The results reveal its distinct spectral characteristics, featuring a hard low-energy spectral index (α) and soft high-energy spectral index (β), similar to GRB 090902B, suggesting a possible dominance of thermal emission. Further analysis indicates that 92% of the spectral indices exceed the synchrotron “line of death,” with the hardest index atα∼ +0.44. Simultaneously, 53% of the spectra can be well fitted by the nondissipative photosphere model, supporting a potential origin from a nondissipative photosphere. Additionally, we observe strong correlations between the spectral indexαand peak energyEpwith flux. For theα−Frelationship, we employF=F0e(3.00±0.10)αto describe it, whereas theEp−Frelationship requires a smoothly bending power-law function. Based on the framework proposed by Hascoët et al. and Gao & Zhang, the jet characteristics of this burst were studied, revealing that both methods support the suitability of a pure fireball model for this GRB at small initial jet radii.more » « less
- 
            Abstract There is no consensus yet on whether the precursor and the main burst of gamma-ray bursts (GRBs) have the same origin, and their jet composition is still unclear. In order to further investigate this issue, we systematically search 21 Fermi GRBs with both a precursor and main burst for spectral analysis. We first perform Bayesian time-resolved spectral analysis and find that almost all the precursors and the main bursts (94.4%) exhibit thermal components and that the vast majority of them have a low-energy spectral index (α; 72.2%) that exceeds the limit of synchrotron radiation. We then analyze the evolution and correlation of the spectral parameters and find that approximately half of theα(50%) of the precursors and the main bursts evolve in a similar pattern, while peak energy (Ep; 55.6%) behaves similarly, and their evolution is mainly characterized by flux tracking; for theα−F(the flux) relation, more than half of the precursors and the main bursts (61.1%) exhibit roughly similar patterns; theEp−Frelation in both the precursor and main burst (100%) exhibits a positive correlation of at least moderate strength. Next, we constrain the outflow properties of the precursors and the main bursts and find that most of them exhibit typical properties of photosphere radiation. Finally, we compare the time-integrated spectra of the precursors and the main bursts and find that nearly all of them are located in similar regions of the Amati relation and follow the Yonetoku relation. Therefore, we conclude that main bursts are continuations of precursors and may share a common physical origin.more » « less
- 
            Abstract Physical processes behind flow‐topography interactions and turbulent transitions are essential for parameterization in numerical models. We examine how the Kuroshio cascades energy into turbulence upon passing over a seamount, employing a combination of shipboard measurements, tow‐yo microstructure profiling, and high‐resolution mooring. The seamount, spanning 5 km horizontally with two summits, interacts with the Kuroshio, whose flow speed ranges from 1 to 2 m s−1, modulated by tides. The forward energy cascade process is commenced by forming a train of 2–3 nonlinear lee waves behind the summit with a wavelength of 0.5–1 km and an amplitude of 50–100 m. A train of Kelvin‐Helmholtz (KH) billows develops immediately below the lee waves and extends downstream, leading to enhanced turbulence. The turbulent kinetic energy dissipation rate isO(10−7–10−4) W kg−1, varying in phase with the upstream flow speed modulated by tides. KH billows occur primarily at the lee wave's trailing edge, where the combined strong downstream shear and low‐stratification recirculation trigger the shear instability,Ri < 1/4. The recirculation also creates an overturn susceptible to gravitational instability. This scenario resembles the rotor, commonly found in atmospheric mountain waves but rarely observed in the ocean. A linear stability analysis further suggests that critical levels, where the KH instability extracts energy from the mean flow, are located predominantly at the strong shear layer of the lee wave's upwelling portion, coinciding with the upper boundary of the rotor. These novel observations may provide insights into flow‐topography interactions and improve physics‐based turbulence parameterization.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
